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Outline
l Brief review of empirical model error correction

l SPEEDY model

l Generation of 6-hour forecasts and analysis increments using NCEP
reanalysis

l Separation of increments into seasonal, diurnal, and state-dependent
components

l Estimation and correction of model errors

l Results: our method is effective and computationally feasible

l Conclusions
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+ c
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l given a model: ẋ = M
(
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l the tendency error g of the improved model is given by

g = ẋt−M
(
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Background
Leith (1978), first to formulate state-dependent correction procedure

l given a model: ẋ = M
(
x
)

l sought an improved model of the form: ẋ = M
(
x
)
+Lx+ c

l the tendency error g of the improved model is given by

g = ẋt−M
(
xt)−Lxt− c

where xt is the state taken as truth (e.g. reanalysis)

l derived an empirical correction by minimizing < g>g >
with respect to c and L

l cL is a state-independent bias estimate

l LLx is a state-dependent estimate of the model error
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Background
DelSole and Hou (1999)

l applied Leith’s procedure to a 2-layer QG model on an 8 x 10 grid
(N=160 degrees of freedom)

l perturbed the model parameters to generate ‘nature’

l resulting model errors were strongly state-dependent

l Leith’s state-dependent error correction extended forecast skill to within
limits imposed by observational noise

l computationally prohibitive for operational use
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.
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Our Method

Generate time series of 6-hour model forecasts and analysis increments
relative to the NCEP reanalysis using a simple but realistic GCM.

I. Estimate the monthly bias.
a. Compare the impact of correcting the model integration with

statistical corrections performed a posteriori.

II. Estimate and correct the diurnal errors.

III. Estimate the state-dependent errors
a. by an approximation of Leith’s method.
b. by a new low-dimensional method based on regression.

IV. Correct the state-dependent errors.
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SPEEDY Model, Molteni (2003)
l primitive equations, global spectral model

l contains parameterizations of condensation, convection, clouds, radi-
ation, surface fluxes, and vertical diffusion

l T30 horizontal resolution, 7 sigma levels

l integrates vorticity, divergence, temperature, specific humidity, and
surface pressure

l post-processed into horizontal wind, temperature, specific humidity,
geopotential height, and surface pressure on 96x48 grid, 7 pressure
levels

l dissipation and time-dependent forcing determined by climatological
SST, surface moisture, albedo, land-surface vegetation, etc.
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Generating Time Series of Model Forecasts and Errors

xt(t)

x6
f(t+1)

xt(t+1)

1982-1986 NCEP Reanalysis

x6
f(t+2)

xt(t+2)

SPEEDY 
forecasts

-

=

-

analysis
increments     x6

a(t+1)    x6
a(t+2)!!
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Time Series and 5-year Climatology
l xf

6(t) = time series of model states

l δxa
6(t) = corresponding analysis increments

l 5-year SPEEDY 6-hour climatology given by monthly mean < xf
6 >

l 5-year reanalysis climatology given by monthly mean < xt >

l Bias given by monthly mean < δxa
6 >
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Estimating and Correcting Global Weather Model Error 19

200hPa Zonal Wind Monthly Bias
5-year Reanalysis Climatology < xt > (contour), Bias < δxa

6 > (color)
January July

l SPEEDY underestimates zonal wind on the poleward side of the win-
ter hemisphere jet.

l Exhibits large winter polar bias.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.

1. Control: Integrate biased model, ẋ = M(x)
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.

1. Control: Integrate biased model, ẋ = M(x)

2. Corrected a posteriori: Correct control forecast by bias < δxa
6 >

at 6 hours, bias < δxa
12 > at 12 hours, etc.
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I. Monthly Bias Correction

Generate three daily 5-day forecasts for each state in 1987 (independent
data), verifying against NCEP reanalysis.

1. Control: Integrate biased model, ẋ = M(x)

2. Corrected a posteriori: Correct control forecast by bias < δxa
6 >

at 6 hours, bias < δxa
12 > at 12 hours, etc.

3. Corrected online: Integrate model, ẋ = M(x)+ <δxa
6>

∆t ,

< δxa
6 > is a daily linear interpolation(

e.g. on July 1, < δxa
6 >= <δxa

6(Jun)>+<δxa
6(Jul)>

2

)
Program of Applied Mathematics and Scientific Computation/University of Maryland
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I. Monthly Bias Correction

500hPa November 1987 Global Mean Anomaly
Correlation
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l Monthly bias correction gives substantial forecast improvement.
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I. Monthly Bias Correction

500hPa November 1987 Global Mean Anomaly
Correlation

! " #

!$%

!$&

!$'

!$(

!$)

!$*

!$+

"

,-.

/!0123

45
67
8-
9:
;<
=
;>
1:?
;@
7-
2-
A.
91
9

! " #

!$%

!$&

!$'

!$(

!$)

!$*

!$+

"

,-.

B7CD76-:E67

! " #

!$%

!$&

!$'

!$(

!$)

!$*

!$+

"

,-.

F75D5:72:1-A;GH:

IJKK,L
,7M1-973
<;J59:761561Ia Ib

l Monthly bias correction gives substantial forecast improvement.

l Online correction performs better than a posteriori correction.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control
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l Online correction is most effective at lower levels.
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I. Monthly Bias Correction

Improvement of Online Correction Relative to Control
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l Online correction is most effective at lower levels.

l Improvements are uniform across levels in T, across seasons by level.
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II. Diurnal Bias Correction

Leading EOFs of Cδxaδxa, T at σ = 0.95, Jan 1982-1986

l Lack of diurnal forcing results in wavenumber 1 structure in the errors

l SPEEDY underestimates (overestimates) near surface daytime (night-
time) temperatures, more prominent over land

Program of Applied Mathematics and Scientific Computation/University of Maryland
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II. Diurnal Bias Correction

Principal Components
l Project leading EOFs onto anomalous analysis increments (Jan ’83)
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l Leading pair of EOFs out of phase by 6 hours

l Find average strength of daily cycle over Jan 1982-86

l Compute diurnal correction as a function of the time of day
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II. Diurnal Bias Correction

EOFs of Cδxaδxa

January
1982-1986

Diurnally
Corrected
1987

l Diurnal correction substantially reduces error amplitude
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III. State-Dependent Error Estimation

Leith (1978) Empirical Correction Operator
l Forecast state covariance: Cxfxf =< xf′

6 xf′>
6 >

l Cross covariance: Cδxaxf =< δxa′
6 xf′>

6 >

Leith’s correction operator, given by L = Cδxaxf Cxfxf
−1, provides a

state-dependent correction:

ẋ = M
(
x
)
+

[
Lx′+ c

] 1
∆t

where c =< δxa
6 >

Problem: Direct computation of Lxf requires O(N3) floating point op-
erations every time step!

Program of Applied Mathematics and Scientific Computation/University of Maryland
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III. State-Dependent Error Estimation

Approximation of Leith correction operator:
l univariate covariances generate block diagonal structure
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III. State-Dependent Error Estimation

Approximation of Leith correction operator:
l univariate covariances generate block diagonal structure

l 3000km covariance localization introduces sparsity to each block
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III. State-Dependent Error Estimation

Approximation of Leith correction operator:
l univariate covariances generate block diagonal structure

l 3000km covariance localization introduces sparsity to each block
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l 400 modes required to explain 90% of variance in dense L

l 40 modes required to explain 90% of variance in sparse L
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III. State-Dependent Error Estimation

First step in our new approach:
Low-Dimensional Approximation based on regression
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III. State-Dependent Error Estimation

First step in our new approach:
Low-Dimensional Approximation based on regression

l SVD of the sparse analysis increment & state covariance,
Cδxaxf = UΣV>, identifies pairs of spatial patterns or EOFs (uk and
vk) that explain as much of possible of the mean-squared temporal
covariance between the analysis increment and state anomalies.
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III. State-Dependent Error Estimation
Analysis inc. (color) and state (contour) coupled signals

u
v!

!
"

l u3 suggests shifting the anomaly v3 northeast (over the dependent sample)
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III. State-Dependent Error Estimation
Analysis inc. (color) and state (contour) coupled signals

u

v2

2
"

l u2 suggests damping the anomaly v2 (over the dependent sample)
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III. State-Dependent Error Estimation

First step in our new approach:
Low-Dimensional Approximation based on regression

l SVD of the sparse analysis increment & state covariance,
Cδxaxf = UΣV>, identifies pairs of spatial patterns or EOFs (uk and
vk) that explain as much of possible of the mean-squared temporal
covariance between the analysis increment and state anomalies.

l Principal Components: project EOFs onto dependent sample

ak(t) = u>k ·δxa′(t)
bk(t) = v>k ·xf′(t)

Program of Applied Mathematics and Scientific Computation/University of Maryland



Estimating and Correcting Global Weather Model Error 40

III. State-Dependent Error Estimation

First step in our new approach:
Low-Dimensional Approximation based on regression

l SVD of the anomalous analysis increment & state covariance,
Cδxaxf = UΣV>, identifies pairs of spatial patterns or EOFs (uk and
vk) that explain as much of possible of the mean-squared temporal
covariance between the analysis increment and state anomalies.

l Principal Components: project EOFs onto dependent sample

ak(t) = u>k ·δxa′(t)
bk(t) = v>k ·xf′(t)

l Heterogeneous correlation maps:

ρ[δxa′,bk] =
(

σk√
< b2

k >

)
uk
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III. State-Dependent Error Estimation
Analysis inc. (color) and state (contour) coupled signals

l u3 is predictable given the forecast anomaly xf′ (over the dependent sample)
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Estimating and Correcting Global Weather Model Error 42

III. State-Dependent Error Estimation
Analysis inc. (color) and state (contour) coupled signals

1

2 3

l uk is predictable given the forecast anomaly xf′ (over the dependent sample)
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III. State-Dependent Error Estimation
Analysis inc. (color) and state (contour) coupled signals

l u2 is predictable given the forecast anomaly xf′ (over the dependent sample)
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III. State-Dependent Error Estimation
Analysis inc. (color) and state (contour) coupled signals

21
3

l uk is predictable given the forecast anomaly xf′ (over the dependent sample)
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III. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxfxfw = x′ for w at each
time step.

Lx′ = Cδxaxf Cxfxf
−1x′

= Cδxaxfw
= UΣV>w
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III. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxfxfw = x′ for w at each
time step.

Lx′ = Cδxaxf Cxfxf
−1x′

= Cδxaxfw
= UΣV>w

However, only the component of w in the space spanned by the right
singular vectors vk can contribute to the empirical correction.
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III. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxfxfw = x′ for w at each
time step.

Lx′ = Cδxaxf Cxfxf
−1x′

= Cδxaxfw
= UΣV>w

However, only the component of w in the space spanned by the right
singular vectors vk can contribute to the empirical correction.

Cbb = < bb> > (over dependent sample)
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III. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxfxfw = x′ for w at each
time step.

Lx′ = Cδxaxf Cxfxf
−1x′

= Cδxaxfw
= UΣV>w

However, only the component of w in the space spanned by the right
singular vectors vk can contribute to the empirical correction.

Cbb = < bb> > (over dependent sample)
bk(T) = v>k ·x′(T) (at independent sample forecast time T)
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III. State-Dependent Error Estimation

Second step in our new approach:
Leith’s empirical correction involves solving Cxfxfw = x′ for w at each
time step.

Lx′ = Cδxaxf Cxfxf
−1x′

= Cδxaxfw
= UΣV>w

However, only the component of w in the space spanned by the right
singular vectors vk can contribute to the empirical correction.

Cbb = < bb> > (over dependent sample)
bk(T) = v>k ·x′(T) (at independent sample forecast time T)

The linear system Cbbγ = b may then be solved for γ at time T. The
solution gives an approximation of w, namely w ≈ ∑

K
k=1 γkvk, which is

exact if K = N.
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IV. State-Dependent Correction

The control model:
ẋ = M

(
x
)

The state-independent online corrected model:

ẋ = M
(
x
)
+ < δxa

6 >
1
∆t

Leith’s state-dependent corrected model given by:

ẋ = M
(
x
)
+

[
< δxa

6 > +Lx′
] 1
∆t

Our low-dimensional state-dependent corrected model is given by:

ẋ = M
(
x
)
+

[
< δxa

6 > +
K

∑
k=1

ukσkγk

] 1
∆t

where γ = Cbb
−1b and bk = v>k ·x′
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IV. State-Dependent Correction

Our low-dimensional state-dependent corrected model is given by

ẋ = M
(
x
)
+

[
< δxa

6 > +
K

∑
k=1

ukσkγk

] 1
∆t

where γ = Cbb
−1b and bk = v>k ·x′
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IV. State-Dependent Correction

During forecasts, a few (K≈10) dominant anomalous model state sig-
nals vk can be projected onto the anomalous model state vector x′.

Our low-dimensional state-dependent corrected model is given by

ẋ = M
(
x
)
+

[
< δxa

6 > +
K

∑
k=1

ukσkγk

] 1
∆t

where γ = Cbb
−1b and bk = v>k ·x′
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IV. State-Dependent Correction

During forecasts, a few (K≈10) dominant anomalous model state sig-
nals vk can be projected onto the anomalous model state vector x′. Then

K

∑
k=1

ukσkγk

l is the best representation of the dependent sample analysis increment
anomalies δxa′ in terms of the current anomalous forecast state x′

l may amplify, dampen, or shift the flow anomaly local to uk

Our low-dimensional state-dependent corrected model is given by

ẋ = M
(
x
)
+

[
< δxa

6 > +
K

∑
k=1

ukσkγk

] 1
∆t

where γ = Cbb
−1b and bk = v>k ·x′
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IV. State-Dependent Correction

6-hr forecasts
debiased low-d corrected

!=0.2 U-wind 
Error (shades)

 and State (contour)

RMS reduced by 14%
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IV. State-Dependent Correction

6-hr forecasts
debiased low-d corrected

!=0.95 Temp 
Error (shades)

 and State (contour)

RMS reduced by 21%
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IV. State-Dependent Correction

We measure the forecast improvement using Leith’s (univariate) dense
and sparse correction operators and our low-dimensional approxima-
tion.

Dense Leith Sparse Leith Low-Dim
Flops per time step O(N3

gp) O(N2
gp) O(Ngp)

Global Improvement −8% (-4hr) 2% (1hr) 4% (2hr)
NH Extratropics Improvement −6% (-3hr) 4% (2hr) 6% (3hr)

Chart contains average January 1987 500hPa improvement over state-
independent corrected forecasts. Correction is more effective in regions
where the heterogeneous correlations ρ are large.
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Results
l State-independent correction of SPEEDY monthly bias dramatically

improves forecasts

l Correction during integration outperforms correction a posteriori

l Time-dependent correction reduces amplitude of diurnal errors

l Our method of low-dimensional state-dependent correction:

• improves forecasts, more notably where correlations are large
• gives better results than Leith’s correction operator
• is 10 orders of magnitude cheaper! (SPEEDY implementation)
• should work easily with existing data assimilation and ensemble

schemes
• requires only the analysis increments for sampling
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Future
l Test implementation on NCEP operational model at reduced resolu-

tion with multivariate covariance.

l Implement with data assimilation and ensemble schemes

l Reduce jumps in reanalysis climatology due to changes in observing
system

Research supported by NOAA THORPEX grant NA040AR4310103
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